Using a neural network to forecast inflation

Author:

Aiken Milam

Abstract

Forecasting inflation is a major concern for economists and businessmen. Most researchers have relied upon statistical techniques with their stringent data assumptions and low accuracy rates to predict changes in inflation, but only a few have investigated how neural networks can improve forecasts. Here, we show the results of Consumer Price Index (CPI) forecasts from an artificial neural network using leading economic indicator data in the USA. Results show that the neural network predicts the level of the CPI with a high degree of accuracy.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference9 articles.

1. Aiken, M., Motiwalla, L., Fish, K. and Bsat, M. (1995), “A comparison of neural networks with discriminant analysis”, Northeast Decision Sciences Institute Conference, 22‐24 March, Providence, Rhode Island, pp. 203‐5.

2. Aiken, M., Singleton, T. and Waller, B. (1996), “Forecasting inflation using a neural network”, Southwest Decision Sciences Institute Conference, March, San Antonio, TX.

3. Collins, E., Ghosh, S. and Scofield, C. (1988), “An application of a multiple neural‐network learning system to emulation of mortgage underwriting judgments”, Proceedings of the IEEE International Conference on Neural Networks, Vol. 2, pp. 459‐66.

4. Moore, G. (1986), A Revised Leading Index of Inflation, Center for International Business Cycle Research, Graduate School Business, Columbia University, February.

5. Niemira, M. (1986), Updated PW Leading Indicators of Inflation, Paine Webber, New York, 26 December.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3