Task scheduling and resource allocation of seasonal requests of users in cloud using NMKA and CM-GA techniques

Author:

Prathiba S.,Sankar Sharmila

Abstract

Purpose The purpose of this paper is to provide energy-efficient task scheduling and resource allocation (RA) in cloud data centers (CDC). Design/methodology/approach Task scheduling and RA is proposed in this paper for cloud environment, which schedules the user’s seasonal requests and allocates resources in an optimized manner. The proposed study does the following operations: data collection, feature extraction, feature reduction and RA. Initially, the online streaming data of seasonal requests of multiple users were gathered. After that, the features are extracted based on user requests along with the cloud server, and the extracted features are lessened using modified principal component analysis. For RA, the split data of the user request is identified and that data is pre-processed by computing closed frequent itemset along with entropy values. After that, the user requests are scheduled using the normalized K-means algorithm (NKMA) centered on the entropy values. Finally, the apt resources are allotted to that scheduled task using the Cauchy mutation-genetic algorithm (CM-GA). The investigational outcomes exhibit that the proposed study outruns other existing algorithms in respect to response time, execution time, clustering accuracy, precision and recall. Findings The proposed NKMA and CM-GA technique’s performance is analyzed by comparing them with the existing techniques. The NKMA performance is analyzed with KMA and Fuzzy C-means regarding Prc (Precision), Rca (Recall), F ms (f measure), Acr (Accuracy)and Ct (Clustering Time). The performance is compared to about 500 numbers of tasks. For all tasks, the NKMA provides the highest values for Prc, Rca, Fms and Acr, takes the lowest time (Ct) for clustering the data. Then, the CM-GA optimization for optimally allocating the resource in the cloud is contrasted with the GA and particle swarm optimization with respect to Rt (Response Time), Pt (Process Time), Awt (Average Waiting Time), Atat (Average Turnaround Time), Lcy (Latency) and Tp (Throughput). For all number of tasks, the proposed CM-GA gives the lowest values for Rt, Pt, Awt, Atat and Lcy and also provides the highest values for Tp. So, from the results, it is known that the proposed technique for seasonal requests RA works well and the method optimally allocates the resources in the cloud. Originality/value The proposed approach provides energy-efficient task scheduling and RA and it paves the way for the development of effective CDC.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference29 articles.

1. Novel approach to task scheduling and load balancing using the dominant sequence clustering and mean shift clustering algorithms;Future Internet,2019

2. Resource provisioning for enriched services in cloud environment;The IEEE Second International Conference on Cloud Computing Technology and Science IEEE,2010

3. Priority-based task scheduling on heterogeneous resources in the expert cloud;Kybernetes,2015

4. Cloud computing applications for smart grid: a survey;Ieee Transactions on Parallel and Distributed Systems,2014

5. Capacity planning for virtualized servers,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3