The value of probabilistic forecasting in emergency medical resource planning under uncertainty

Author:

Chen Zhen-YuORCID

Abstract

Purpose Most epidemic transmission forecasting methods can only provide deterministic outputs. This study aims to show that probabilistic forecasting, in contrast, is suitable for stochastic demand modeling and emergency medical resource planning under uncertainty. Design/methodology/approach Two probabilistic forecasting methods, i.e. quantile regression convolutional neural network and kernel density estimation, are combined to provide the conditional quantiles and conditional densities of infected populations. The value of probabilistic forecasting in improving decision performances and controlling decision risks is investigated by an empirical study on the emergency medical resource planning for the COVID-19 pandemic. Findings The managerial implications obtained from the empirical results include (1) the optimization models using the conditional quantile or the point forecasting result obtain better results than those using the conditional density; (2) for sufficient resources, decision-makers' risk preferences can be incorporated to make tradeoffs between the possible surpluses and shortages of resources in the emergency medical resource planning at different quantile levels; and (3) for scarce resources, the differences in emergency medical resource planning at different quantile levels greatly decrease or disappear because of the existing of forecasting errors and supply quantity constraints. Originality/value Very few studies concern probabilistic epidemic transmission forecasting methods, and this is the first attempt to incorporate deep learning methods into a two-phase framework for data-driven emergency medical resource planning under uncertainty. Moreover, the findings from the empirical results are valuable to select a suitable forecasting method and design an efficient emergency medical resource plan.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference32 articles.

1. A system dynamics approach to COVID-19 pandemic control: a case study of Iran;Kybernetes,2021

2. Forecasting electricity smart meter data using conditional kernel density estimation;Omega,2016

3. From predictive to prescriptive analytics;Management Science,2020

4. Perspectives on supply chain forecasting;International Journal of Forecasting,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3