Abstract
PurposeLogistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to respond to customers' needs effectively and efficiently. The main concern for logistics is to ensure that the correct product is placed at the right time. This paper introduces a linear model of shipping focused on decision-making, which includes configuration of shipping network, choosing of transport means and transfer of individual customer shipments through a particular transport system.Design/methodology/approachIn this study, authors try to address the problem of supply chain network (SCN) where the primary goal is to determine the appropriate order allocation of products from different sources to different destinations. They also seek to minimize total transportation cost and inventory cost by simultaneously determining optimal locations, flows and shipment composition. The formulated problem of getting optimal allocation turns out to be a problem of multi-objective programming, and it is solved by using the max-addition fuzzy goal programming approach, for obtaining optimal order allocation of products. Furthermore, the problem demand and supply parameters have been considered random in nature, and the maximum likelihood estimation approach has been used to assess the unknown probabilistic distribution parameters with a specified probability level (SPL).FindingsA case study has also been applied for examining the effectiveness and applicability of the developed multi-objective model and the proposed solution methods. Results of this study are very relevant for the manufacturing sector in particular, for those facing logistics issues in SCN. It enables researchers and managers to cope with various types of uncertainty and logistics risks associated with SCN.Research limitations/implicationsThe principal contribution of the proposed model is the improved modelling of transportation and inventory, which are affected by different characteristics of SCN. To demonstrate computational information of the suggested methods and proposed model, a case illustration of SCN is provided. Also, environmentalism is increasingly becoming a significant global concern. Hence, the concept proposed could be extended to include environmental aspects as an objective function or constraint.Originality/valueEfficient integration of logistical cost components, such as transportation costs, inventory costs, with mathematical programming models is an important open issue in logistics optimization. This study expands conventional facility location models to incorporate a range of logistic system elements such as transportation cost and different types of inventory cost, in a multi-product, multi-site network. The research is original and is focused on case studies of real life.
Subject
Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)
Reference52 articles.
1. The nearest trapezoidal fuzzy number to a fuzzy quantity;Applied Mathematics and Computation,2004
2. A new approach for ranking of trapezoidal fuzzy number;Computers and Mathematics with Applications,2009
3. A bi-objective location-inventory model with capacitated transportation and lateral transshipments;International Journal of Production Research,2016
4. Akaike, H. (1974), “A new look at the statistical model identification”, Selected Papers of Hirotugu Akaike, Springer, New York, NY, pp. 215-222.
5. Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment;International Journal of System Assurance Engineering and Management,2019
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献