Determining the factor levels for a green supply chain using response surface methodology based discrete event simulation

Author:

Dosdoğru Ayşe TuğbaORCID,Buruk Sahin YelizORCID,Göçken MustafaORCID,Boru İpek AslıORCID

Abstract

PurposeThis study aims to optimize the levels of factors for a green supply chain (GSC) while concurrently gaining valuable insights into the dynamic interrelationships among several factors, leading to reductions in CO2 emissions and the maximization of the average service level, thereby enhancing overall supply chain performance.Design/methodology/approachResponse surface methodology (RSM) is employed as a technique for multiple response optimization. This study uses a supply chain simulation model that includes decision variables related to the level of inventory control parameters and vehicle capacity. The desirability approach is adopted to achieve optimization objectives by focusing on minimizing CO2 emissions and maximizing service levels while simultaneously determining the optimum levels of considered decision variables.FindingsThe high R2 values of 97.38% for CO2 and 97.28% for service level, along with adjusted R2 values reasonably close to predicted values, affirm the models' capability to predict responses accurately. Key significant model terms for CO2 encompassed reorder point, order up to quantity, vehicle capacity, and their interaction effects, while service level is notably influenced by reorder point, order up to quantity, and their interaction effects. The study successfully achieved a high level of desirability value of %99.1 and the validated performance levels confirmed that the results fall within the prediction interval.Originality/valueThis study introduces a metamodel framework designed to optimize various design parameters for a GSC combining discrete event simulation (DES) and RSM in the form of a simulation optimization model. In contrast to the literature, the current study offers an exhaustive and in-depth analysis of the structural elements of the supply chain, particularly the inventory control parameters and vehicle capacity, which are crucial for comprehending its performance and environmental impact.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3