The effect of vertical throughflow on the boundary layer flow of a nanofluid past a stretching/shrinking sheet

Author:

Pop Ioan,Naganthran Kohilavani,Nazar Roslinda,Ishak Anuar

Abstract

Purpose The purpose of this paper is to study the effects of vertical throughflow on the boundary layer flow and heat transfer of a nanofluid driven by a permeable stretching/shrinking surface. Design/methodology/approach Similarity transformation is used to convert the system of boundary layer equations into a system of ordinary differential equations. The system of governing similarity equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software. The generated numerical results are presented graphically and discussed based on some governing parameters. Findings It is found that dual solutions exist in both cases of stretching and shrinking sheet situations. Stability analysis is performed to determine which solution is stable and valid physically. Originality/value Dual solutions are found for positive and negative values of the moving parameter. A stability analysis has also been performed to show that the first (upper branch) solutions are stable and physically realizable, while the second (lower branch) solutions are not stable and, therefore, not physically possible.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference35 articles.

1. Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction;Chemical Engineering Research Bulletin,2011

2. Convective transport in nanofluids;Journal of Heat Transfer,2006

3. A benchmark study on the thermal conductivity of nanofluids;Journal of Applied Physics,2009

4. Heat transfer on a continuous stretching sheet;ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik),1982

5. Enhancing thermal conductivity of fluids with nanoparticles,1995

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3