Abstract
Purpose
This paper aims to introduce a new (3 + 1)-dimensional fourth-order integrable equation characterized by second-order derivative in time t. The new equation models both right- and left-going waves in a like manner to the Boussinesq equation.
Design/methodology/approach
This formally uses the simplified Hirota’s method and lump schemes for determining multiple soliton solutions and lump solutions, which are rationally localized in all directions in space.
Findings
This paper confirms the complete integrability of the newly developed (3 + 1)-dimensional model in the Painevé sense.
Research limitations/implications
This paper addresses the integrability features of this model via using the Painlevé analysis.
Practical implications
This paper presents a variety of lump solutions via using a variety of numerical values of the included parameters.
Social implications
This work formally furnishes useful algorithms for extending integrable equations and for the determination of lump solutions.
Originality/value
To the best of the author’s knowledge, this paper introduces an original work with newly developed integrable equation and shows useful findings of solitons and lump solutions.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献