Author:
Cheloii Navid Ahmadi,Akbari Omid Ali,Toghraie Davood
Abstract
Purpose
This study aims to numerically investigate the heat transfer and laminar forced and two-phase flow of Water/Cu nanofluid in a rectangular microchannel with oblique ribs with angle of attacks equal to 0-45°. This simulation was conducted in the range of Reynolds numbers of 5-120 in volume fractions of 0, 2 and 4 per cent of solid nanoparticles in three-dimensional space.
Design/methodology/approach
This study investigates the effect of the changes of angle of attack of rectangular rib on heat transfer and hydrodynamics of two-phase flow. This study was done in three-dimensional space and simulation was done with finite volume method. SIMPLEC algorithm and second-order discretization of equations were used to increase the accuracy of results. The usage of nanofluid, application of rips with different angles of attacks and using the two-phase mixture method is the distinction of this paper compared with other studies.
Findings
The results of this research revealed that the changing angle of attack of ribs is an effective factor in heat transfer enhancement. On the other hand, the existence of rib on the internal surfaces of a microchannel increases friction coefficient. By increasing the volume fraction of nanoparticles, due to the augmentation of fluid density and viscosity, the pressure drop increases significantly. For all of the angle of attacks studied in this paper, the maximum rate of performance evaluation criterion has been obtained in Reynolds number of 30 and the minimum amount of performance evaluation criterion was been obtained in Reynolds numbers of 5 and 120.
Originality/value
Many studies have been done in the field of heat transfer in ribbed microchannel. In this paper, the laminar flow in the ribbed microchannel Water/Cu nanofluid in a rectangular microchannel by using two-phase mixture method is numerically investigated with different volume fractions (0-4 per cent), Reynolds numbers (5-120) and angle of attacks of rectangular rib in the indented microchannel (0-45°).
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference55 articles.
1. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study;Experimental Thermal and Fluid Science,2016
2. Mechanics of saturated granular materials;International Journal of Non-Linear Mechanics,1980
3. On mechanics of incompressible multiphase suspensions;Advances in Water Resources,1987
4. A thermodynamical formulation for dispersed multiphase turbulent flows, part I: basic theory;International Journal of Multiphase Flow,1990
5. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel;Advances in Mechanical Engineering,2015
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献