Experimental and numerical investigations of thermal performance of Al2O3/water nanofluid for a combi boiler with double heat exchangers

Author:

Ozdemir Mustafa Bahadir,Ergun Mustafa Emre

Abstract

PurposeThis study aims to focus on usage of Al2O3/water nanofluid as working fluid in a combi boiler. The plate heat exchanger located at the bottom of the combi boiler has been used for heating the domestic water in the present study. Al2O3/water nanofluid has also been used in obtaining of the heat energy provided from combustion. Therefore, thermal performance of Al2O3/water has been determined by comparing water and nanofluid-water mixture. The present study also investigates heat transfer rates as numerical and experimental for varying cold side outlet temperatures, comparatively.Design/methodology/approachThe present study has included both experimental and numerical methodologies. The experimental setup consists of main heat exchanger, atmospheric burner, circulation pump and plate-type heat exchanger in which the Al2O3/water nanofluid was used as working fluid to heat the domestic water. In the numerical part of the study, a commercial computational fluid dynamic code has been used to model heat rate and thermal efficiency of the heat exchanger used.FindingsIt has been concluded that the predicted results are in satisfactorily good agreement with the measured data. In the experimental part of the study, the flow rate of Al2O3/water nanofluid was kept constant during the experiments. The flow rates of the water by which the heated Al2O3/water nanofluid mixture was cooled via the plate heat exchanger have been changed as 3, 4, 5 and 6 lpm. The domestic water temperatures that were kept constant have also been changed as 40°C, 45°C, 50°C, 55°C and 60°C. It has been concluded that the Al2O3/water nanofluid thermal efficiency has been 16 per cent better than pure water.Originality/valueThe main originality of the present study is that thermal efficiency of the plate-type heat exchanger when Al2O3/water mixture nanofluids are used as there are limited studies related to the usage of Al2O3/water mixture nanofluids in the plate-type heat exchanger not only experimental but also numerical methodologies.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3