Abstract
PurposeSpeckle noise removal in ultrasound images is one of the important tasks in biomedical-imaging applications. Many filtering -based despeckling methods are discussed in many existing works. Two-dimensional (2-D) transforms are also used enormously for the reduction of speckle noise in ultrasound medical images. In recent years, many soft computing-based intelligent techniques have been applied to noise removal and segmentation techniques. However, there is a requirement to improve the accuracy of despeckling using hybrid approaches.Design/methodology/approachThe work focuses on double-bank anatomy with framelet transform combined with Gaussian filter (GF) and also consists of a fuzzy kind of clustering approach for despeckling ultrasound medical images. The presented transform efficiently rejects the speckle noise based on the gray scale relative thresholding where the directional filter group (DFB) preserves the edge information.FindingsThe proposed approach is evaluated by different performance indicators such as the mean square error (MSE), peak signal to noise ratio (PSNR) speckle suppression index (SSI), mean structural similarity and the edge preservation index (EPI) accordingly. It is found that the proposed methodology is superior in terms of all the above performance indicators.Originality/valueFuzzy kind clustering methods have been proved to be better than the conventional threshold methods for noise dismissal. The algorithm gives a reconcilable development as compared to other modern speckle reduction procedures, as it preserves the geometric features even after the noise dismissal.
Subject
Computer Science Applications,History,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comparative analysis of preprocessing techniques on ultrasound images of CCA;International Journal of System Assurance Engineering and Management;2024-01-05