Author:
Choudhury Amitava,Konnur Tanmay,Chattopadhyay P.P.,Pal Snehanshu
Abstract
Purpose
The purpose of this paper, is to predict the various phases and crystal structure from multi-component alloys. Nowadays, the concept and strategies of the development of multi-principal element alloys (MPEAs) significantly increase the count of the potential candidate of alloy systems, which demand proper screening of large number of alloy systems based on the nature of their phase and structure. Experimentally obtained data linking elemental properties and their resulting phases for MPEAs is profused; hence, there is a strong scope for categorization/classification of MPEAs based on structural features of the resultant phase along with distinctive connections between elemental properties and phases.
Design/methodology/approach
In this paper, several machine-learning algorithms have been used to recognize the underlying data pattern using data sets to design MPEAs and classify them based on structural features of their resultant phase such as single-phase solid solution, amorphous and intermetallic compounds. Further classification of MPEAs having single-phase solid solution is performed based on crystal structure using an ensemble-based machine-learning algorithm known as random-forest algorithm.
Findings
The model developed by implementing random-forest algorithm has resulted in an accuracy of 91 per cent for phase prediction and 93 per cent for crystal structure prediction for single-phase solid solution class of MPEAs. Five input parameters are used in the prediction model namely, valence electron concentration, difference in the pauling negativeness, atomic size difference, mixing enthalpy and mixing entropy. It has been found that the valence electron concentration is the most important feature with respect to prediction of phases. To avoid overfitting problem, fivefold cross-validation has been performed. To understand the comparative performance, different algorithms such as K-nearest Neighbor, support vector machine, logistic regression, naïve-based approach, decision tree and neural network have been used in the data set.
Originality/value
In this paper, the authors described the phase selection and crystal structure prediction mechanism in MPEA data set and have achieved better accuracy using machine learning.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献