Investigation of pull-in behavior of circular nanoplate actuator based on the modified couple stress theory

Author:

Lin Ming-Xian,Chen Chao Kuang

Abstract

Purpose This paper aims to present a nonclassical circular plate model subjected to hydrostatic pressure and electrostatic actuations by considering the modified couple stress theory and the surface elasticity theory. The pull-in phenomenon and nonlinear behavior of circular nanoplate are investigated. Design/methodology/approach The hybrid differential transformation method (DTM) and finite difference method (FDM) are used to approach the model. The DTM was first applied to the equation with respect to the time, and then the FDM was applied with respect to the radius. Findings The numerical results were in agreement with the numerical data in the previous literature. The effects of the length scale parameters, surface parameters, thermal stress, residual stress, hydrostatic pressure and electrostatic actuations of the nonclassical circular plate on the pull-in instability are investigated. The parametric study demonstrated that the pull-in behavior of the circular nanoplate was size dependent. Originality/value In this study, the results provide a suitable method in a nonclassical circular plate model. The length scale parameter had an obvious effect on the nonlinear behavior of the circular nanoplate.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference50 articles.

1. A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations;International Journal of Non-Linear Mechanics,2014

2. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory;Physica E: Low-Dimensional Systems and Nanostructures,2017

3. Size-dependent pull-in instability of torsional nano-actuator;Physica Scripta,2013

4. Free vibrations of axial-loaded beams resting on viscoelastic foundation using adomian decomposition method and differential transformation. Engineering science and technology;An International Journal,2018

5. Application of differential transformation to eigenvalue problems;Applied Mathematics and Computation,1996

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3