Deep learning based affective computing

Author:

Kumar SaurabhORCID

Abstract

PurposeDecision-making in human beings is affected by emotions and sentiments. The affective computing takes this into account, intending to tailor decision support to the emotional states of people. However, the representation and classification of emotions is a very challenging task. The study used customized methods of deep learning models to aid in the accurate classification of emotions and sentiments.Design/methodology/approachThe present study presents affective computing model using both text and image data. The text-based affective computing was conducted on four standard datasets using three deep learning customized models, namely LSTM, GRU and CNN. The study used four variants of deep learning including the LSTM model, LSTM model with GloVe embeddings, Bi-directional LSTM model and LSTM model with attention layer.FindingsThe result suggests that the proposed method outperforms the earlier methods. For image-based affective computing, the data was extracted from Instagram, and Facial emotion recognition was carried out using three deep learning models, namely CNN, transfer learning with VGG-19 model and transfer learning with ResNet-18 model. The results suggest that the proposed methods for both text and image can be used for affective computing and aid in decision-making.Originality/valueThe study used deep learning for affective computing. Earlier studies have used machine learning algorithms for affective computing. However, the present study uses deep learning for affective computing.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

Reference66 articles.

1. Deep learning for heterogeneous human activity recognition in complex IoT applications;IEEE Internet of Things Journal,2020

2. FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection;Knowledge-Based Systems,2021

3. Deep learning for biological image classification;Expert Systems with Applications,2017

4. Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences;Neurocomputing,2012

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3