Abstract
PurposeDecision-making in human beings is affected by emotions and sentiments. The affective computing takes this into account, intending to tailor decision support to the emotional states of people. However, the representation and classification of emotions is a very challenging task. The study used customized methods of deep learning models to aid in the accurate classification of emotions and sentiments.Design/methodology/approachThe present study presents affective computing model using both text and image data. The text-based affective computing was conducted on four standard datasets using three deep learning customized models, namely LSTM, GRU and CNN. The study used four variants of deep learning including the LSTM model, LSTM model with GloVe embeddings, Bi-directional LSTM model and LSTM model with attention layer.FindingsThe result suggests that the proposed method outperforms the earlier methods. For image-based affective computing, the data was extracted from Instagram, and Facial emotion recognition was carried out using three deep learning models, namely CNN, transfer learning with VGG-19 model and transfer learning with ResNet-18 model. The results suggest that the proposed methods for both text and image can be used for affective computing and aid in decision-making.Originality/valueThe study used deep learning for affective computing. Earlier studies have used machine learning algorithms for affective computing. However, the present study uses deep learning for affective computing.
Subject
Information Systems,Management of Technology and Innovation,General Decision Sciences
Reference66 articles.
1. Deep learning for heterogeneous human activity recognition in complex IoT applications;IEEE Internet of Things Journal,2020
2. FSS-2019-nCov: a deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection;Knowledge-Based Systems,2021
3. Deep learning for biological image classification;Expert Systems with Applications,2017
4. Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences;Neurocomputing,2012
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献