Photochromic properties of 1′,3′,3′‐trimethyl‐6‐nitrospiro[2H‐1‐benzopyran‐2,2′‐indoline] doped in PMMA and epoxy resin thin films

Author:

Bahajaj A.A.,Asiri A.M.,Alsoliemy A.M.,Al‐Sehemi A.G.

Abstract

PurposeThe purpose of this paper is to evaluate the photochromic performance of photochromic compounds in polymer matrices.Design/methodology/approachThe poly(methyl methacrylate) (PMMA) and epoxy resin doped with photochromic spirobenzopyran were prepared and the effects of ultraviolet (UV) irradiation were studied using spectrophotometer. The reversible reaction was effected using white light. Photochemical fatigue resistance of these films was also studied.FindingsIrradiation of colourless 1′,3′,3′‐trimethyl‐6‐nitrospiro[2H‐1‐benzopyran‐2,2′‐indoline] spiropyran (SP) doped in PMMA and epoxy resin with UV light (366 nm) results in the formation of an intense purple‐red coloured zwitterionic photomerocyanine (PMC). The reverse reaction was photochemically induced by irradiation with white light. Photocolouration of SP doped in PMMA follows a first‐order rate equation (k=0.0011 s−1), while that doped in epoxy resin deviates from linearity. It was found that photobleaching follows a first‐order equation in both matrices. The photobleaching rate constant of PMC in both matrices is the same and equals 0.0043 s−1. Spirobenzopyran doped in PMMA shows better fatigue resistance than that doped in epoxy resin.Research limitations/implicationsThe PMMA and epoxy resin polymers doped with photochromic spirobenzopyran described in the present paper were prepared and studied. The principle of study established can be applied to any type of polymer or to any type of photochromic compounds.Practical implicationsThe photochromic materials developed can be used for different applications, such as coatings and holography.Originality/valueThe method developed may be used to enhance the performance of photochromic materials.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3