Author:
Alam Manawwer,Al‐Andis Naser M.
Abstract
PurposeThe purpose of this study is to develop poly(etherfattyamide) coatings from Pongamia glabra seeds oil utilizing a sustainable resource, which is non edible, non medicinal and goes as waste. Seed oil based poly(etherfattyamide) is used as a coating material to improve the coating properties especially gloss and alkali resistance.Design/methodology/approachPongamia glabra oil was first converted into N,N′ bis 2‐hydroxyethyl Pongamia glabra oil fatty amide (HEPFA). HEPFA was treated with 1,4‐cyclohexanedimethanol (CHDM) to develop poly(etherfattyamide) (PEFA). PEFA was cured with (butylated melamine formaldehyde) (BMF) in different (35, 40, 45, 50) phr (part per hundred part of resin) to produce coating material. The structural elucidations of HEPFA and PEFA were carried out by FT‐IR, 1H‐NMR and 13C‐NMR spectral techniques. The thermal study was performed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The physico‐mechanical and chemical resistance/anticorrosive properties were investigated by standard laboratory methods.FindingsThe authors developed a good coatings material from a sustainable resource. The physico‐mechanical and anticorrosive performance evaluation exhibits satisfactory results. PEFA‐BMF coatings material showed good alkali resistance and high gloss. The thermal studies showed that PEFA‐BMF45 may be safely used up to 225°C.Practical implicationsBMF modified PEFA coatings showed the highest scratch hardness 3.5 kg, flexibility (1/8 inch conical mandrel bend test) and gloss at 45° is 76‐82. Among all, PEFA‐BMF45 showed the best physico‐mechanical and chemical resistance performance. Thus, it may be used as an efficient coating material.Originality/valueThe synthesis of BMF modified PEFA from Pongamia glabra oil using 1,4‐cyclohexanedimethanol has been studied for the first time providing a new approach to utilize a non edible seed oil – a sustainable resource.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献