Numerical study of the flow field characteristics over a backward facing step using k-kl-ω turbulence model: comparison with different models

Author:

Ahmed Yasser M.,Elbatran A.H.

Abstract

Purpose This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment. Design/methodology/approach It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows. Findings The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications. Originality/value The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference34 articles.

1. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step;International Journal of Heat and Fluid Flow,2008

2. Heat transfer and fluid flow characteristics of separated flows encountered in a backward-facing step under the effect of suction and blowing;Journal of Heat Transfer,2007

3. Experimental and theoretical investigation of backward-facing step flow;Journal of Fluid Mechanics,1983

4. A study of boundary layers for detached flows,2006

5. Features of a reattaching turbulent shear layer in divergent channel flow;AIAA Journal,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3