The study of diffusion characteristics of soil bentonite to control contaminant transport

Author:

Mahallei Hamed,Badv Kazem

Abstract

Purpose The purpose of this paper is to assess sand-bentonite liners (SBL) which could be used as hydraulic barriers with a controllable quality, relatively low cost and easy operation in solid waste landfills. Design/methodology/approach These barriers have been used successfully in various applications and have attracted much attention in a short period of time. The only precautionary use of SBLs is related to the change of their hydraulic properties in high alkaline chemical environments. The main reason for this phenomenon is the presence of high ion exchange minerals in bentonite. By exposure to these environments, it is also laid open to degradation of the montmorillonite microstructure leads to change in hydraulic behavior. Three different compounds were used for laboratory-scale SBL, and diffusion was considered as the dominant mechanism of contamination transmission in these liners. Chlorine ion has been used as pollutant, and its diffusion coefficient was determined in the tested SBLs. Findings The sample’s diffusion coefficient for the first experiment containing 3% bentonite and 97% Semnan sand were 2.5 × 10^(−9) (m^2/s) and 2.44 × 10 ^(−9) (m^2/s), respectively. Similarly, for two samples with 6% bentonite and 94% Semnan sand, this parameter was equal to 2.17 × 10 ^(−9) (m^2/s) and 2.22 × 10 ^(−9) (m^2/s) and for two samples with 3% agglacial clay, 12% bentonite and 85% Semnan sand was 5.55 × 10 ^(−10) (m^2/s) and 6.11 × 10 ^(−10) (m^2/s). These values correspond to the range reported in previous studies. Also, it was observed that with comparing the diffusion coefficients of test, it was concluded that with increasing bentonite, the molecular diffusion decreases significantly. Originality/value In this study, three laboratory samples with different percentages of bentonite, clay and sand were considered and the results obtained from the laboratory were compared with the results obtained from numerical modeling.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference32 articles.

1. Evaluations of groundwater contamination by leachates around olusosun open dumpsite in Lagos metropolis, southwest Nigeria;Journal of Environmental Management,2016

2. Assessment of spatial distribution of contaminants and their levels in soil and water resources of Calabar, Nigeria using geophysical and geological data;Environmental Earth Sciences,2018

3. Laboratory determination of chloride diffusion coefficient in an intact shale;Canadian Geotechnical Journal,1990

4. Britton, J.P. (2001), “Soil- bentonite cutoff walls: hydraulic conductivity and contaminant transport”, Thesis presented to the University of Virginia, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

5. Investigation into municipal waste leachate in the unsaturated zone of red soil;Environment International,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3