Mechanical anti-lock braking system using pneumatic system and solenoid valve with low cost manufacturing

Author:

K. Vinoth Kumar,T.G. Loganathan,G. Jagadeesh

Abstract

Purpose The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety. Design/methodology/approach The design methodology of the proposed newer mechanical ABS comprises of two units, namely, the braking unit and wheel lock prevention unit. The braking unit actuates the wheel stopping as and when the driver applies the brake, whereas the wheel lock prevention unit initiates wheel release to prevent locking and subsequent slip/skidding. The brake pedal with master cylinder assembly and double-arm cylinder forms the braking unit, brake pad cylinder, movable brake pad, solenoid valve and dynamo forms the wheel lock prevention unit. The dynamo coupled with the rotor energises/de-energises the solenoid values to direct airflow for applying brake and release it, which makes the system less energy-dependent. Findings The braking unit aids in vehicle stops, by locking the disc with the brake pad actuated by a double-arm cylinder. The dynamo energises the solenoid valve to activate the brake pad cylinder piston for applying the brake on the disc. Instantaneously, on applying the brake the dynamo de-energises the solenoid to divert the pneumatic flow for retracting the brake pad thereby minimizing the braking torque. The baking torque reduction revives the wheel rotating and prevents slip/skidding. Originality/value Mechanical ABS preventing wheel lock by torque reduction principle is a novel method that has not been evolved so far. The system was designed with repair/replacement of the parts and subcomponents to support higher affordability on safety grounds.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference24 articles.

1. An antilock-braking systems (ABS) control: a technical review;Intelligent Control and Automation,2011

2. Application of a sliding mode control to anti-lock brake system,2008

3. Evaluation of antilock braking system with an integrated model of full vehicle system dynamics;Simulation Modelling Practice and Theory,2011

4. The effectiveness of antilock braking systems in reducing accidents in great Britain;Accident Analysis & Prevention,2002

5. A fuzzy logic control for antilock braking system integrated in the IMMA tire test bench;IEEE Transactions on Vehicular Technology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3