A Markov logic network method for reconstructing association rule-mining tasks in library book recommendation

Author:

Wang Shanshan,Xu Jiahui,Feng Youli,Peng Meiling,Ma Kaijie

Abstract

Purpose This study aims to overcome the problem of traditional association rules relying almost entirely on expert experience to set relevant interest indexes in mining. Second, this project can effectively solve the problem of four types of rules being present in the database at the same time. The traditional association algorithm can only mine one or two types of rules and cannot fully explore the database knowledge in the decision-making process for library recommendation. Design/methodology/approach The authors proposed a Markov logic network method to reconstruct association rule-mining tasks for library recommendation and compared the method proposed in this paper to traditional Apriori, FP-Growth, Inverse, Sporadic and UserBasedCF algorithms on two history library data sets and the Chess and Accident data sets. Findings The method used in this project had two major advantages. First, the authors were able to mine four types of rules in an integrated manner without having to set interest measures. In addition, because it represents the relevance of mining in the network, decision-makers can use network visualization tools to fully understand the results of mining in library recommendation and data sets from other fields. Research limitations/implications The time cost of the project is still high for large data sets. The authors will solve this problem by mapping books, items, or attributes to higher granularity to reduce the computational complexity in the future. Originality/value The authors believed that knowledge of complex real-world problems can be well captured from a network perspective. This study can help researchers to avoid setting interest metrics and to comprehensively extract frequent, rare, positive, and negative rules in an integrated manner.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference46 articles.

1. Mining association rules between sets of items in large databases,1993

2. A novel approach based on utility mining for store layout: a case study in a supermarket;Industrial Management & Data Systems,2017

3. Mining positive and negative association rules: an approach for confined rules,2004

4. Essential patterns: a perfect cover of frequent patterns,2005

5. Applying association rules to study bipolar disorder and premenstrual dysphoric disorder comorbidity,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3