Deep learning architecture using rough sets and rough neural networks

Author:

Hassan Yasser F.

Abstract

Purpose This paper aims to utilize machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications. Design/methodology/approach The objective of this work is to propose a model for deep rough set theory that uses more than decision table and approximating these tables to a classification system, i.e. the paper propose a novel framework of deep learning based on multi-decision tables. Findings The paper tries to coordinate the local properties of individual decision table to provide an appropriate global decision from the system. Research limitations/implications The rough set learning assumes the existence of a single decision table, whereas real-world decision problem implies several decisions with several different decision tables. The new proposed model can handle multi-decision tables. Practical implications The proposed classification model is implemented on social networks with preferred features which are freely distribute as social entities with accuracy around 91 per cent. Social implications The deep learning using rough sets theory simulate the way of brain thinking and can solve the problem of existence of different information about same problem in different decision systems Originality/value This paper utilizes machine learning and soft computing to propose a new method of rough sets using deep learning architecture for many real-world applications.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference20 articles.

1. Analysis of a heterogeneous social network of humans and cultural objects;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2015

2. Scene analysis by mid-level attribute learning using 2D LSTM networks and an application to web-image tagging;Pattern Recognition Letters,2015

3. Incremental algorithm for attribute reduction with variable precision rough sets;Applied Soft Computing,2016

4. Ensembles of deep learning architectures for the early diagnosis of Alzheimer’s Disease;International Journal of Neural Systems,2016

5. A New method for intuitionistic fuzzy multi-attribute decision making;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2016

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3