Stream processing data decision model for higher environmental performance and resilience in sustainable logistics infrastructure

Author:

Kayikci Yasanur

Abstract

PurposeAs the global freight transport network has experienced high vulnerability and threats from both natural and man-made disasters, as a result, a huge amount of data is generated in freight transport system in form of continuous streams; it is becoming increasingly important to develop sustainable and resilient transport system to recover from any unforeseen circumstances quickly and efficiently. The aim of this paper is to develop a stream processing data driven decision-making model for higher environmental performance and resilience in sustainable logistics infrastructure by using fifteen dimensions with three interrelated domains.Design/methodology/approachA causal and hierarchical stream processing data driven decision-making model to evaluate the impact of different attributes and their interrelationships and to measure the level of environmental performance and resilience capacity of sustainable logistics infrastructure are proposed. This work uses fuzzy cognitive maps (FCMs) and fuzzy analytic hierarchy process (FAHP) techniques. A real-life case under a disruptive event scenario is further conducted.FindingsThe result shows which attributes have a greater impact on the level of environmental performance and resilience capacity in sustainable logistics infrastructure.Originality/valueIn this paper, causal and hierarchical stream processing data decision and control system model was proposed by identified three domains and fifteen dimensions to assess the level of environmental performance and resilience in sustainable logistics infrastructure. The proposed model gives researchers and practitioners insights about sustainability trade-offs for a resilient and sustainable global transport supply chain system by enabling to model interdependencies among the decision attributes under a fuzzy environment and streaming data.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

Reference84 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3