Demand forecasting for apparel manufacturers by using neuro-fuzzy techniques

Author:

Aksoy Asli,Öztürk Nursel,Sucky Eric

Abstract

Purpose – According to literature research and conversations with apparel manufacturers' specialists, there is not any common analytic method for demand forecasting in apparel industry and to the authors' knowledge, there is not adequate number of study in literature to forecast the demand with adaptive network-based fuzzy inference system (ANFIS) for apparel manufacturers. The purpose of this paper is constructing an effective demand forecasting system for apparel manufacturers. Design/methodology/approach – The ANFIS is used forecasting the demand for apparel manufacturers. Findings – The results of the proposed study showed that an ANFIS-based demand forecasting system can help apparel manufacturers to forecast demand accurately, effectively and simply. Originality/value – ANFIS is a new technique for demand forecasting, combines the learning capability of the neural networks and the generalization capability of the fuzzy logic. In this study, the demand is forecasted in terms of apparel manufacturers by using ANFIS. The input and output criteria are determined based on apparel manufacturers' requirements and via literature research and the forecasting horizon is about one month. The study includes the real-life application of the proposed system, and the proposed system is tested by using real demand values for apparel manufacturers.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3