Long-term robot manipulation task planning with scene graph and semantic knowledge

Author:

Miao Runqing,Jia Qingxuan,Sun Fuchun

Abstract

Purpose Autonomous robots must be able to understand long-term manipulation tasks described by humans and perform task analysis and planning based on the current environment in a variety of scenes, such as daily manipulation and industrial assembly. However, both classical task and motion planning algorithms and single data-driven learning planning methods have limitations in practicability, generalization and interpretability. The purpose of this work is to overcome the limitations of the above methods and achieve generalized and explicable long-term robot manipulation task planning. Design/methodology/approach The authors propose a planning method for long-term manipulation tasks that combines the advantages of existing methods and the prior cognition brought by the knowledge graph. This method integrates visual semantic understanding based on scene graph generation, regression planning based on deep learning and multi-level representation and updating based on a knowledge base. Findings The authors evaluated the capability of this method in a kitchen cooking task and tabletop arrangement task in simulation and real-world environments. Experimental results show that the proposed method has a significantly improved success rate compared with the baselines and has excellent generalization performance for new tasks. Originality/value The authors demonstrate that their method is scalable to long-term manipulation tasks with varying complexity and visibility. This advantage allows their method to perform better in new manipulation tasks. The planning method proposed in this work is meaningful for the present robot manipulation task and can be intuitive for similar high-level robot planning.

Publisher

Emerald

Reference47 articles.

1. Aeronautiques, C., Howe, A., Knoblock, C., McDermott, I.D., Ram, A., Veloso, M., Weld, D., Sri, D.W., Barrett, A. and Christianson, D.J.T.R. (1998), “PDDL| The planning domain definition language”, Tech. Rep.

2. Taskography: evaluating robot task planning over large 3D scene graphs,2022

3. The enumeration of maximal cliques of large graphs;SIAM Journal on Computing,1973

4. A hybrid conjugated method for assembly sequence generation and explode view generation,2019

5. Storing and retrieving perceptual episodic memories for long-term manipulation tasks,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3