Real‐time business process monitoring using formal concept analysis

Author:

Kang Bokyoung,Jung Jae‐Yoon,Wook Cho Nam,Kang Suk‐Ho

Abstract

PurposeThe purpose of this paper is to help industrial managers monitor and analyze critical performance indicators in real time during the execution of business processes by proposing a visualization technique using an extended formal concept analysis (FCA). The proposed approach monitors the current progress of ongoing processes and periodically predicts their probable routes and performances.Design/methodology/approachFCA is utilized to analyze relations among patterns of events in historical process logs, and this method of data analysis visualizes the relations in a concept lattice. To apply FCA to real‐time business process monitoring, the authors extended the conventional concept lattice into a reachability lattice, which enables managers to recognize reachable patterns of events in specific instances of business processes.FindingsBy using a reachability lattice, expected values of a target key performance indicator are predicted and traced along with probable outcomes. Analysis is conducted periodically as the monitoring time elapses over the course of business processes.Practical implicationsThe proposed approach focuses on the visualization of probable event occurrences on the basis of historical data. Such visualization can be utilized by industrial managers to evaluate the status of any given instance during business processes and to easily predict possible subsequent states for purposes of effective and efficient decision making. The proposed method was developed in a prototype system for proof of concept and has been illustrated using a simplified real‐world example of a business process in a telecommunications company.Originality/valueThe main contribution of this paper lies in the development of a real‐time monitoring approach of ongoing processes. The authors have provided a new data structure, namely a reachability lattice, which visualizes real‐time progress of ongoing business processes. As a result, current and probable next states can be predicted graphically using periodically conducted analysis during the processes.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence to counteract “KPI overload” in business process monitoring: the case of anti-corruption in public organizations;Business Process Management Journal;2023-05-17

2. A system design of big data analytics for an IoT-enabled warehouse;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

3. Rule-based visualization of faulty process conditions in the die-casting manufacturing;Journal of Intelligent Manufacturing;2022-12-02

4. A Process Mining Framework Based on Deep Learning Feature Fusion;2022 41st Chinese Control Conference (CCC);2022-07-25

5. Predictive Business Process Monitoring;Encyclopedia of Big Data Technologies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3