An intelligent pre-estimation method of design time for complex products based on v-SVM

Author:

Zheng Yujie,Li Meiyan

Abstract

Purpose Improving the prediction accuracy of design time for complex products is significant for improving the accuracy of product development and control plans. The purpose of this study is to propose an intelligent pre-estimation method of design time for complex products based on v-SVM. Design/methodology/approach First, an evaluation model for designer knowledge abilities based on v-SVM is built, which considers the fuzziness and dynamics of designer knowledge abilities. Next, a pre-estimation method for the design time of complex products based on v-SVM is built. This method takes into account the impacts of designer knowledge abilities and design task characteristics on the design time. Then, an adaptive genetic algorithm is programmed to optimize the parameters in the evaluation model and the pre-estimation method. Finally, a practical application and comparative analysis of the proposed pre-estimation method is suggested to verify the validity and applicability of this research. Findings First, the evaluation of designer knowledge abilities is a prediction problem that is both fuzzy and multivariate time series. Second, the pre-estimation of design time is a problem that is fuzzy and multivariate. Third, the pre-estimation accuracy of the proposed method is higher when compared with traditional methods. Originality/value This paper presents an intelligent pre-estimation method of design time for complex products. Unlike previous research, the pre-estimation method takes into account the impacts of both the designer knowledge abilities and the design task characteristics on the design time.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3