Author:
Kumar Sunil,Chauhan R.P.,Momani Shaher,Hadid Samir
Abstract
Purpose
This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control.
Design/methodology/approach
The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems.
Findings
Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved.
Originality/value
This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献