Abstract
Purpose
The variational principle views a complex problem in an energy way, it gives good physical understanding of an iteration method, and the variational-based numerical methods always have a conservation scheme with a fast convergent rate. The purpose of this paper is to establish a variational principle for a fractal nano/microelectromechanical (N/MEMS) system.
Design/methodology/approach
This paper begins with an approximate variational principle in literature for the studied problem, and a genuine variational principle is obtained by the semi-inverse method.
Findings
The semi-inverse method is a good mathematical tool to the search for a genuine fractal variational formulation for the N/MEMS system.
Research limitations/implications
The established variational principle can be used for both analytical and numerical analyses of the N/MEMS systems, and it can be extended to some more complex cases.
Practical implications
The variational principle can be used for variational-based finite element methods and energy-based analytical methods.
Originality/value
The new and genuine variational principle is obtained. This paper discovers the missing piece of the puzzle for the establishment of a variational principle from governing equations for a complex problem by the semi-inverse method. The new variational theory opens a new direction in fractal MEMS systems.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献