Exploring the dynamics of bigdata adoption in the Indian food industry with fuzzy analytical hierarchical process

Author:

Singh Jayati,Kumar Rupesh,Kumar VinodORCID,Chatterjee SheshadriORCID

Abstract

PurposeThe main aim of this study is to identify and prioritize the factors that influence the adoption of big data analytics (BDA) within the supply chain (SC) of the food industry in India.Design/methodology/approachThe study is carried out in two distinct phases. In the first phase, barriers hindering BDA adoption in the Indian food industry are identified. Subsequently, the second phase rates/prioritizes these barriers using multicriteria methodologies such as the “analytical hierarchical process” (AHP) and the “fuzzy analytical hierarchical process” (FAHP). Fifteen barriers have been identified, collectively influencing the BDA adoption in the SC of the Indian food industry.FindingsThe findings suggest that the lack of data security, availability of skilled IT professionals, and uncertainty about return on investments (ROI) are the top three apprehensions of the consultants and managers regarding the BDA adoption in the Indian food industry SC.Research limitations/implicationsThis research has identified several reasons for the adoption of bigdata analytics in the supply chain management of foods in India. This study has also highlighted that big data analytics applications need specific skillsets, and there is a shortage of critical skills in this industry. Therefore, the technical skills of the employees need to be enhanced by their organizations. Also, utilizing similar services offered by other external agencies could help organizations potentially save time and resources for their in-house teams with a faster turnaround.Originality/valueThe present study will provide vital information to companies regarding roadblocks in BDA adoption in the Indian food industry SC and motivate academicians to explore this area further.

Publisher

Emerald

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3