Novel approach of detecting the black hole attack for vehicular ad-hoc networks based on capability indicators

Author:

El Houssaini Souad,El Houssaini Mohammed-Alamine,El Kafi Jamal

Abstract

Purpose In vehicular ad hoc networks (VANETs), the information transmitted is broadcast in a free access environment. Therefore, VANETs are vulnerable against attacks that can directly perturb the performance of the networks and then provoke big fall of capability. Black hole attack is an example such attack, where the attacker node pretends that having the shortest path to the destination node and then drops the packets. This paper aims to present a new method to detect the black hole attack in real-time in a VANET network. Design/methodology/approach This method is based on capability indicators that are widely used in industrial production processes. If the different capability indicators are greater than 1.33 and the stability ratio (Sr) is greater than 75%, the network is stable and the vehicles are communicating in an environment without the black hole attack. When the malicious nodes representing the black hole attacks are activated one by one, the fall of capability becomes more visible and the network is unstable, out of control and unmanaged, due to the presence of the attacks. The simulations were conducted using NS-3 for the network simulation and simulation of urban mobility for generating the mobility model. Findings The proposed mechanism does not impose significant overheads or extensive modifications in the standard Institute of Electrical and Electronics Engineers 802.11p or in the routing protocols. In addition, it can be implemented at any receiving node which allows identifying malicious nodes in real-time. The simulation results demonstrated the effectiveness of proposed scheme to detect the impact of the attack very early, especially with the use of the short-term capability indicators (Cp, Cpk and Cpm) of each performance metrics (throughput and packet loss ratio), which are more efficient at detecting quickly and very early the small deviations over a very short time. This study also calculated another indicator of network stability which is Sr, which allows to make a final decision if the network is under control and that the vehicles are communicating in an environment without the black hole attack. Originality/value According to the best of the authors’ knowledge, the method, using capability indicators for detecting the black hole attack in VANETs, has not been presented previously in the literature.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference43 articles.

1. Real-time detection of MAC layer misbehavior in mobile ad hoc networks;Applied Computing and Informatics,2017

2. A survey on security attacks in VANETs: communication, applications and challenges;Vehicular Communications,2019

3. Pseudonym change-based privacy-preserving schemes in vehicular ad-hoc networks: a survey;Journal of Information Security and Applications,2020

4. Novel cross layer detection schemes to detect blackhole attack against QoS-OLSR protocol in VANET;Vehicular Communications,2016

5. QoS of MANet through trust based AODV routing protocol by exclusion of black hole attack;Procedia Technology,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3