Abstract
PurposeThis paper aims to develop a novel grey Bernoulli model with memory characteristics, which is designed to dynamically choose the optimal memory kernel function and the length of memory dependence period, ultimately enhancing the model's predictive accuracy.Design/methodology/approachThis paper enhances the traditional grey Bernoulli model by introducing memory-dependent derivatives, resulting in a novel memory-dependent derivative grey model. Additionally, fractional-order accumulation is employed for preprocessing the original data. The length of the memory dependence period for memory-dependent derivatives is determined through grey correlation analysis. Furthermore, the whale optimization algorithm is utilized to optimize the cumulative order, power index and memory kernel function index of the model, enabling adaptability to diverse scenarios.FindingsThe selection of appropriate memory kernel functions and memory dependency lengths will improve model prediction performance. The model can adaptively select the memory kernel function and memory dependence length, and the performance of the model is better than other comparison models.Research limitations/implicationsThe model presented in this article has some limitations. The grey model is itself suitable for small sample data, and memory-dependent derivatives mainly consider the memory effect on a fixed length. Therefore, this model is mainly applicable to data prediction with short-term memory effect and has certain limitations on time series of long-term memory.Practical implicationsIn practical systems, memory effects typically exhibit a decaying pattern, which is effectively characterized by the memory kernel function. The model in this study skillfully determines the appropriate kernel functions and memory dependency lengths to capture these memory effects, enhancing its alignment with real-world scenarios.Originality/valueBased on the memory-dependent derivative method, a memory-dependent derivative grey Bernoulli model that more accurately reflects the actual memory effect is constructed and applied to power generation forecasting in China, South Korea and India.
Subject
Applied Mathematics,General Computer Science,Control and Systems Engineering
Reference44 articles.
1. Higher-order time-differential heat transfer model with three-phase lag including memory-dependent derivatives;International Communications in Heat and Mass Transfer,2021
2. Memory-Dependent-Derivatives (MDD) for magneto-thermal-plasma semiconductor medium induced by laser pulses with hyperbolic two temperature theory;Alexandria Engineering Journal,2022
3. Construction and application of a time-delayed grey Bernoulli model with dummy variables;Journal of Grey System,2022
4. Discrete fractional calculus for fuzzy-number-valued functions and some results on initial value problems for fuzzy fractional difference equations;Information Sciences,2022
5. Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate;Chaos, Solitons and Fractals,2008