Abstract
PurposeSustainable supply chain finance (SSCF) is a fascinated consideration for both academics and practitioners because the indicators are still underdeveloped in achieving SSCF. This study proposes a bibliometric data-driven analysis from the literature to illustrate a clear overall concept of SSCF that reveals hidden indicators for further improvement.Design/methodology/approachA hybrid quantitative and qualitative approach combining data-driven analysis, fuzzy Delphi method (FDM), entropy weight method (EWM) and fuzzy decision-making trial and evaluation laboratory (FDEMATEL) is employed to address the uncertainty in the context.FindingsThe results show that blockchain, cash flow shortage, reverse factoring, risk assessment and triple bottom line (TBL) play significant roles in SSCF. A comparison of the challenges and gaps among different geographic regions is provided in both advanced local perspective and a global state-of-the-art assessment. There are 35 countries/territories being categorized into five geographic regions. Of the five regions, two, Latin America and the Caribbean and Africa, show the needs for more improvement, exclusively in collaboration strategies and financial crisis. Exogenous impacts of wars, natural disasters and disease epidemics are implied as inevitable attributes for enhancing the sustainability.Originality/valueThis study contributes to (1) boundary SSCF foundations by data driven, (2) identifying the critical SSCF indicators and providing the knowledge gaps and directions as references for further examination and (3) addressing the gaps and challenges in different geographic regions to provide advanced assessment from local viewpoint and to diagnose the comprehensive global state of the art of SSCF.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献