Dynamic property of consumer-based brand competitiveness (CBBC) in human interaction behavior

Author:

Zuo Meihua,Liu Hongwei,Zhu Hui,Gao Hongming

Abstract

Purpose The purpose of this paper is to identify potential competitive relationships among brands by analyzing the dynamic clicking behavior of consumers. Design/methodology/approach Consumer sequential online click data, collected from JD.com, is used to analyze the dynamic competitive relationship between brands. It is found that the competition intensity across categories of products can differ considerably. Consumers exhibit big differences in purchasing time of durable-like goods, that is, the purchasing probability of such products changes considerably over time. The local polynomial regression model (LPRM) is used to analyze the relationship between brand competition of durable-like goods and the purchasing probability of a particular brand. Findings The statistical results of collective behaviors show that there is a 90/10 rule for the category durable-like goods, implying that ten percent of the brands account for 90 percent market share in terms of both clicking and purchasing behavior. The dynamic brand cognitive process of impulsive consumers displays an inverted V shape, while cautious consumers display a double V shaped cognitive process. The dynamic consumers’ cognition illustrates that when the brands capture a half of the click volume, the brands’ competitiveness reaches to its peak and makes no significant different from brands accounting for 100 percent of the click volume in terms of the purchasing probability. Research limitations/implications There are some limitations to the research, including the limitations imposed by the data set. One of the most serious problems in the data set is that the collected click-stream is desensitized severely, restricting the richness of the conclusions of this study. Second, the data set consists of many other consumer behavioral data, but only the consumer’s clicking behavior is analyzed in this study. Therefore, in future research, the parameters brand browsing by consumers and the time of browsing in each brand should be added as indicators of brand competitive intensity. Practical implications The authors study brand competitiveness by analyzing the relationship between the click rate and the purchase likelihood of individual brands for durable-like products. When the brand competitiveness is less than 50 percent, consumers tend to seek a variety of new brands, and their purchase likelihood is positively correlated with the brand competitiveness. Once consumers learn about a particular brand excessively among all other brands at a period of time, the purchase likelihood of its products decreases due to the thinner consumer’s short-term loyalty the brand. Till the brand competitiveness runs up to 100 percent, consumers are most likely to purchase a brand and its product. That indicates brand competitiveness maintain 50 percent of the whole market is most efficient to be profitable, and the performance of costing more to improve the brand competitiveness might make no difference. Originality/value There are many studies on brand competition, but most of these research works analyze the brand’s marketing strategy from the perspective of the company. The limitation of this research is that the data are historical and failure to reflect time-variant competition. Some researchers have studied brand competition through consumer behavior, but the shortcoming of these studies is that it does not consider sequentiality of consumer behavior as this study does. Therefore, this study contributes to the literature by using consumers’ sequential clicking behavior and expands the perspective of brand competition research from the angle of consumers. Simultaneously, this paper uses the LPRM to analyze the relationship between consumer clicking behavior and brand competition for the first time, and expands the methodology accordingly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3