Author:
Cheng Yuanpeng,Bai Yu,Tang Shanfa,Zheng Dukui,Li Zili,Liu JianGuo
Abstract
Purpose
The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques.
Design/methodology/approach
The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering and transportation pipeline steel. The weight loss tests were carried out in a 3 L autoclave, and effects of water cut and temperature on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using x-ray diffraction.
Findings
The results showed that due to the wetting and adsorption of crude oil, the corrosion morphology of X65 steel changed under different water cuts. When the water cut of crude oil was 40-50 per cent, uniform corrosion occurred on the steel surface, accompanied by local pitting. While the water cut was 70-80 per cent, the resulting corrosion product scales were thick, loose and partial shedding caused platform corrosion. When the water cut was 90 per cent, the damaged area of platform corrosion was enlarged. Crude oil can hinder the corrosion scales from being dissolved by the corrosive medium, and change dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales. Under the corrosion inhibition effect of crude oil, the temperature sensitive point of X65 steel corrosion process moved to low temperature, appeared at about 50°C, lower corrosion rate interval was broadened and the corrosion resistance of X65 steel was enhanced.
Originality/value
The results can be helpful in selecting the applicable corrosion inhibitors and targeted anti-corrosion measures for CO2-saturated oil/water corrosive environment.
Subject
General Materials Science,General Chemical Engineering
Reference34 articles.
1. Corrosion protection of steel pipelines against CO2 corrosion-a review;Chemistry Journal,2012
2. Film former corrosion inhibitors for oil and gas pipelines - a technical review;Journal of Natural Gas Science and Engineering,2018
3. Experimental study of water wetting in oil-water two phase flow-horizontal flow of model oil;Chemical Engineering Science,2012
4. The corrosion behavior of X65 steel in CO2/oil/water environment of gathering pipeline;Anti-Corrosion Methods and Materials,2018
5. Effect of main controlling factor on the corrosion behaviour of API X65 pipeline steel in the CO2/oil/water environment;Anti-Corrosion Methods and Materials,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献