Reduction of the warping of a silicon wafer coated with two thin layers by minimal geometric modifications

Author:

El Fatmi Imad,Belhenini Soufyane,Tougui Abdellah

Abstract

Purpose The aim of this study is to make a contribution towards reducing the deflections of silicon wafers. The deformation of silicon wafers used in the manufacture of electronic micro-components is one of the most common problems encountered by industrialists during manufacturing. Stack warping is typically produced during the process of depositing thin layers on a substrate. This is due to the thermal-mechanical stresses caused by the difference between the thermal expansion coefficients of the materials. Reducing wafer deformation is essential to increase reliability and improve quality. In this paper, the authors propose an approach based on minimal geometrical modifications to reduce the deformation of a silicon wafer coated with two thin layers. Numerical finite element models have been developed to evaluate the impact of geometrical modifications on warping amplitude. Finite element models have been validated compared with experimental models. The results obtained are encouraging and clearly show a considerable reduction in wafer deformation. Design/methodology/approach Reducing wafer deformation is essential to increase reliability and improve quality. In this paper, the authors propose an approach based on minimal geometrical modifications to reduce the deformation of a silicon wafer coated with two thin layers. Numerical finite element models have been developed to evaluate the impact of geometrical modifications on warping amplitude. Finite element models have been validated compared with experimental models. Findings The results obtained are encouraging and clearly show a considerable reduction in wafer deformation. Originality/value This paper describes the influence of geometric modification on wafer deformation. The work show also the cruciality of stress reduction in the purpose to obtain less wafer deformation.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference12 articles.

1. Numerical simulation of silicon wafer warpage due to thin film residual stresses,2013

2. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing;International Journal of Machine Tools and Manufacture,2008

3. On the fabrication of backside illuminated image sensors: bonding oxide, edge trimming and CMP rework routes;ECS Transactions,2015

4. Study of damage and stress induced by backgrinding in si wafers;Semiconductor Science and Technology,2003

5. Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling;Thin Solid Films,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3