Nonlinear dynamic co-rotational formulation for membrane elements with in-plane drilling rotational degree of freedom

Author:

Boutagouga Djamel,Djeghaba Kamel

Abstract

Purpose nonlinear dynamic analysis of triangular and quadrilateral membrane elements with in-plane drilling rotational degree of freedom. Design/methodology/approach The nonlinear analysis is carried out using the updated co-rotational Lagrangian description. In this purpose, in-plane co-rotational formulation that considers the in-plane drilling rotation is developed and presented for triangular and quadrilateral elements, and a tangent stiffness matrix is derived. Furthermore, a simple and effective in-plane mass matrix that takes into account the in-plane rotational inertia, which permit true representation of in-plane vibrational modes is adopted for dynamic analysis, which is carried out using the Newmark direct time integration method. Findings The proposed numerical tests show that the presented elements exhibit very good performances and could return true in-plane rotational vibrational modes. Also, when using a well-chosen co-rotational formulation these elements shows good results for nonlinear static and dynamic analysis. Originality/value Publications that describe geometrical nonlinearity of the in-plane behaviour of membrane element with rotational d.o.f are few, and often they are based on the total Lagrangian formulation or on the rate form. Also these elements, at the author knowledge, have not been extended to the nonlinear dynamic analysis. Thus, an appropriate extension of triangular and quadrilateral membrane elements with drilling rotation to nonlinear dynamic analysis is required.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3