A comparative study on crack identification of structures from the changes in natural frequencies using GA and PSO

Author:

Mohan S.C.,Yadav Amit,Kumar Maiti Dipak,Maity Damodar

Abstract

Purpose – The early detection of cracks, corrosion and structural failure in aging structures is one of the major challenges in the civil, mechanical and aircraft industries. Common inspection techniques are time consuming and hence can have strong economic implications due to downtime. The paper aims to discuss these issues. Design/methodology/approach – As a result, during the past decade a number of methodologies have been proposed for detecting crack in structure based on variations in the structure's dynamic characteristics. This work showcases the efficacy of particle swarm optimization (PSO) and genetic algorithm (GA) in damage assessment of structures. Findings – Efficiency of these tools has been tested on structures like beam, plane and space truss. The results show the effectiveness of PSO in crack identification and the possibility of implementing it in a real-time structural health monitoring system for aircraft and civil structures. Originality/value – The methodology presented establishes the PSO as robust and competent tool over GA for crack identification using changes in natural frequencies.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3