An enhanced adaptive butterfly optimization algorithm rigorously verified on engineering problems and implemented to ISAR image motion compensation

Author:

Ustun Deniz

Abstract

Purpose This study aims to evolve an enhanced butterfly optimization algorithm (BOA) with respect to convergence and accuracy performance for numerous benchmark functions, rigorous constrained engineering design problems and an inverse synthetic aperture radar (ISAR) image motion compensation. Design/methodology/approach Adaptive BOA (ABOA) is thus developed by incorporating spatial dispersal strategy to the global search and inserting the fittest solution to the local search, and hence its exploration and exploitation abilities are improved. Findings The accuracy and convergence performance of ABOA are well verified via exhaustive comparisons with BOA and its existing variants such as improved BOA (IBOA), modified BOA (MBOA) and BOA with Levy flight (BOAL) in terms of various precise metrics through 15 classical and 12 conference on evolutionary computation (CEC)-2017 benchmark functions. ABOA has outstanding accuracy and stability performance better than BOA, IBOA, MBOA and BOAL for most of the benchmarks. The design optimization performance of ABOA is also evaluated for three constrained engineering problems such as welded beam design, spring design and gear train design and the results are compared with those of BOA, MBOA and BOA with chaos. ABOA, therefore, optimizes engineering designs with the most optimal variables. Furthermore, a validation is performed through translational motion compensation (TMC) of the ISAR image for an aircraft, which includes blurriness. In TMC, the motion parameters such as velocity and acceleration of target are optimally predicted by the optimization algorithms. The TMC results are elaborately compared with BOA, IBOA, MBOA and BOAL between each other in view of images, motion parameter and numerical image measuring metrics. Originality/value The outperforming results reflect the optimization and design successes of ABOA which is enhanced by establishing better global and local search abilities over BOA and its existing variants.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference57 articles.

1. Butterfly algorithm with lèvy flights for global optimization,2016

2. An improved butterfly optimization algorithm for global optimization;Advanced Science, Engineering and Medicine,2016

3. An improved butterfly optimization algorithm with chaos;Journal of Intelligent and Fuzzy Systems,2017

4. Butterfly optimization algorithm: a novel approach for global optimization;Soft Computing,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3