Finite element implementation of viscoelastic and viscoplastic models

Author:

Sepiani Hossein,Polak Maria Anna,Penlidis Alexander

Abstract

Purpose The purpose of this study is to present a finite element (FE) implementation of phenomenological three-dimensional viscoelastic and viscoplastic constitutive models for long term behaviour prediction of polymers. Design/methodology/approach The method is based on the small strain assumption but is extended to large deformation for materials in which the stress-strain relation is nonlinear and the concept of incompressibility is governing. An empirical approach is used for determining material parameters in the constitutive equations, based on measured material properties. The modelling process uses a spring and dash-pot and a power-law approximation function method for viscoelastic and viscoplastic nonlinear behaviour, respectively. The model improvement for long term behaviour prediction is done by modifying the material parameters in such a way that they account for the current test time. The determination of material properties is based on the non-separable type of relations for nonlinear materials in which the material properties change with stress coupled with time. Findings The proposed viscoelastic and viscoplastic models are implemented in a user material algorithm of the FE general-purpose program ABAQUS and the validity of the models is assessed by comparisons with experimental observations from tests on high-density polyethylene samples in one-dimensional tensile loading. Comparisons show that the proposed constitutive model can satisfactorily represent the time-dependent mechanical behaviour of polymers even for long term predictions. Originality/value The study provides a new approach in long term investigation of material behaviour using FE analysis.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference39 articles.

1. Finite element formulation for modeling nonlinear viscoelastic elastomers;Computer Methods in Applied Mechanics and Engineering,2008

2. Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: application to a high-density polyethylene;International Journal of Plasticity,2010

3. Tensile behavior of polycarbonate over a wide range of strain rates;Materials Science and Engineering: A,2010

4. An alternative approach to estimating parameters in creep models of high-density polyethylene;Polymer Engineering and Science,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of self-tapping screw joints in fibre glass reinforced PEI polymer used in the automotive industry;The International Journal of Advanced Manufacturing Technology;2023-04-28

2. A scaled boundary finite element formulation for solving plane-strain viscoelastic problems;European Journal of Mechanics - A/Solids;2022-11

3. Structural damping models for passive aeroelastic control;Aerospace Science and Technology;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3