Enhancing flow characteristic and system performance in micropump with heart valve mechanical behavior

Author:

Lai Hsin-Yi,Kang Jing-HaoORCID

Abstract

PurposeThis study aims to solve the problems of low flow rate and low efficiency of micropumps in high-frequency applications. This micropump system was proposed to meet the requirements of 1–5 ml/min for microthrusters or drug delivery devices.Design/methodology/approachIn this paper, a comprehensive analysis indicator and numerical procedure were disclosed and used to demonstrate the fluid dynamic characteristics and performance of a micropump. Accordingly, the reliability of the two-way coupling calculation was ensured through mutual verification of the real structure and the numerical system.FindingsThe research results indicate that the Polydimethylsiloxane (PDMS) microchannel can realize the contraction and expansion mechanism, allowing the fluid to generate different levels of pressure gradient during the working stroke and also enhancing the characteristics of energy consumption and storage of the flow field.Originality/valueThe pressure gradient between the fluid and PDMS microchannel can facilitate the improvement of the fluid backflow in a micropump. Therefore, in terms of performance improvement, the PDMS micropump increased the maximum backflow and optimum efficiency by approximately 50 and 90%, respectively.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference22 articles.

1. Micromachined gas flow regulator for ion propulsion systems;IEEE Transactions on Aerospace and Electronic Systems,2002

2. Study on a piezoelectric micropump for the controlled drug delivery system;Microfluidics and Nanofluidics,2007

3. Design, fabrication and testing of fixed-valve micro-pumps;Asme-Publications-Fed,1995

4. Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application;Microsystem Technologies,2019

5. System modeling and characterization of enhanced valveless micropumps;Mechanics Based Design of Structures and Machines,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Stereo Video Inpainting;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3