Development of hybrid model for modeling of diffusion phase transformation

Author:

Łach Łukasz,Svyetlichnyy Dmytro

Abstract

Purpose Some functional properties of engineering materials, i.e. physical, mechanical and thermal ones, depend directly on the microstructure, which is a result of processes occurring in the material during the forming and thermomechanical processing. The proper microstructure can be obtained in many cases by the phase transformation. This phenomenon is one of the most important processes during hot forming and heat treatment. The purpose of this paper is to develop a new comprehensive hybrid model for modeling diffusion phase transformations. A problem has been divided into several tasks and is carried out on several stages. The purpose of this stage is a development of the structure of a hybrid model, development of an algorithm used in the diffusion module and one-dimensional heat flow and diffusion modeling. Generally, the processes of phase transformations are studied well enough but there are not many tools for their complex simulations. The problems of phase transformation simulation are related to the proper consideration of diffusion, movement of phase boundaries and kinetics of transformation. The proposed new model at the final stage of development will take into account the varying grain growth rate, different shape of growing grains and will allow for proper modeling of heat flow and carbon diffusion during the transformation in many processes, where heating, annealing and cooling can be considered (e.g. homogenizing and normalizing). Design/methodology/approach One of the most suitable methods for modeling of microstructure evolution during the phase transformation is cellular automata (CA), while lattice Boltzmann method (LBM) suits for modeling of diffusion and heat flow. Then, the proposed new hybrid model is based on CA and LBM methods and uses high performing parallel computations. Findings The first simulation results obtained for one-dimensional modeling confirm the correctness of interaction between LBM and CA in common numerical solution and the possibility of using these methods for modeling of phase transformations. The advantages of the LBM method can be used for the simulation of heat flow and diffusion during the transformation taking into account the results obtained from the simulations. LBM creates completely new possibilities for modeling of phase transformations in combination with CA. Practical implications The studies are focused on diffusion phase transformations in solid state in condition of low cooling rate (e.g. transformation of austenite into ferrite and pearlite) and during the heating and annealing (e.g. transformation of the ferrite-pearlite structure into austenite, the alignment of carbon concentration in austenite and growth of austenite grains) in carbon steels within a wide range of carbon content. The paper presents the comprehensive modeling system, which can operate with the technological processes with phase transformation during heating, annealing or cooling. Originality/value A brief review of the modeling of phase transformations and a description of the structure of a new CA and LBM hybrid model and its modules are presented in the paper. In the first stage of model implementation, the one-dimensional LBM model of diffusion and heat flow was developed. The examples of simulation results for several variants of modeling with different boundary conditions are shown.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3