Efficient solution of the fuzzy eigenvalue problem in structural dynamics

Author:

Xia Yuying,Friswell M.

Abstract

Purpose – Many analysis and design problems in engineering and science involve uncertainty to varying degrees. This paper is concerned with the structural vibration problem involving uncertain material or geometric parameters, specified as fuzzy parameters. The requirement is to propagate the parameter uncertainty to the eigenvalues of the structure, specified as fuzzy eigenvalues. However, the usual approach is to transform the fuzzy problem into several interval eigenvalue problems by using the α-cuts method. Solving the interval problem as a generalized interval eigenvalue problem in interval mathematics will produce conservative bounds on the eigenvalues. The purpose of this paper is to investigate strategies to efficiently solve the fuzzy eigenvalue problem. Design/methodology/approach – Based on the fundamental perturbation principle and vertex theory, an efficient perturbation method is proposed, that gives the exact extrema of the first-order deviation of the structural eigenvalue. The fuzzy eigenvalue approach has also been improved by reusing the interval analysis results from previous α-cuts. Findings – The proposed method was demonstrated on a simple cantilever beam with a pinned support, and produced very accurate fuzzy eigenvalues. The approach was also demonstrated on the model of a highway bridge with a large number of degrees of freedom. Originality/value – This proposed Vertex-Perturbation method is more efficient than the standard perturbation method, and more general than interval arithmetic methods requiring the non-negative decomposition of the mass and stiffness matrices. The new increment method produces highly accurate solutions, even when the membership function for the fuzzy eigenvalues is complex.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy-Affine Approach in Dynamic Analysis of Uncertain Structural Systems;Soft Computing in Interdisciplinary Sciences;2021-11-02

2. Fuzzy eigenvalue problems of structural dynamics using ANN;New Paradigms in Computational Modeling and Its Applications;2021

3. Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties;STEEL COMPOS STRUCT;2020

4. Affine Arithmetic Based Solution of Uncertain Static and Dynamic Problems;Synthesis Lectures on Mathematics and Statistics;2020-03-16

5. Uncertain Linear Dynamic Problems;Affine Arithmetic Based Solution of Uncertain Static and Dynamic Problems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3