Polynomials for numerical solutions of space-time fractional differential equations (of the Fokker–Planck type)

Author:

Wang Jiao

Abstract

Purpose Fokker–Planck equation appears in various areas in natural science, it is used to describe solute transport and Brownian motion of particles. This paper aims to present an efficient and convenient numerical algorithm for space-time fractional differential equations of the Fokker–Planck type. Design/methodology/approach The main idea of the presented algorithm is to combine polynomials function approximation and fractional differential operator matrices to reduce the studied complex equations to easily solved algebraic equations. Findings Based on Taylor basis, simple and useful fractional differential operator matrices of alternative Legendre polynomials can be quickly obtained, by which the studied space-time fractional partial differential equations can be transformed into easily solved algebraic equations. Numerical examples and error date are presented to illustrate the accuracy and efficiency of this technique. Originality/value Various numerical methods are proposed in complex steps and are computationally expensive. However, the advantage of this paper is its convenient technique, i.e. using the simple fractional differential operator matrices of polynomials, numerical solutions can be quickly obtained in high precision. Presented numerical examples can also indicate that the technique is feasible for this kind of fractional partial differential equations.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference27 articles.

1. Solution for a fractional diffusion-wave equation defined in a bounded domain;Nonlinear Dynamics,2002

2. Solution of nonlinear Voterra-Hammerstein integral equations using alternative Legendre collocation method;Sahand Communications in Mathematical Analysis,2016

3. Numerical solution of nonlinear integral equations using alternative Legendre polynomials;Journal of Applied Mathematics and Computing,2016

4. Application of a fractional advection-despersion equation;Water Resources Research,2000

5. The fractional-order governing equation of levy motion;Water Resources Research,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3