A virtual element method for frictional contact including large deformations

Author:

Wriggers Peter,Rust Wilhelm T.

Abstract

PurposeThis paper aims to describe the application of the virtual element method (VEM) to contact problems between elastic bodies.Design/methodology/approachPolygonal elements with arbitrary shape allow a stable node-to-node contact enforcement. By adaptively adjusting the polygonal mesh, this methodology is extended to problems undergoing large frictional sliding.FindingsThe virtual element is well suited for large deformation contact problems. The issue of element stability for this specific application is discussed, and the capability of the method is demonstrated by means of numerical examples.Originality/valueThis work is completely new as this is the first time, as per the authors’ knowledge, the VEM is applied to large deformation contact.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference41 articles.

1. Virtual elements for linear elasticity problems;SIAM Journal on Numerical Analysis,2013

2. A virtual element method for elastic and inelastic problems on polytope meshes;Computer Methods in Applied Mechanics and Engineering,2015

3. Stability analysis for the virtual element method;Mathematical Models and Methods in Applied Sciences,2017

4. The virtual element method with curved edges,2017

5. The hitchhiker’s guide to the virtual element method;Mathematical Models and Methods in Applied Sciences,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3