Finite element analysis of magnetohydrodynamic flow over flat surface moving in parallel free stream with viscous dissipation and Joule heating

Author:

Chaudhary Santosh,Choudhary Mohan Kumar

Abstract

Purpose The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid over a continuous moving flat surface considering the viscous dissipation and Joule heating. Design/methodology/approach Suitable similarity variables are introduced to reduce the governing nonlinear boundary layer partial differential equations to ordinary differential equations. A numerical solution of the resulting two-point boundary value problem is carried out by using the finite element method with the help of Gauss elimination technique. Findings A comparison of obtained results is made with the previous work under the limiting cases. Behavior of flow and thermal fields against various governing parameters like mass transfer parameter, moving flat surface parameter, magnetic parameter, Prandtl number and Eckert number are analyzed and demonstrated graphically. Moreover, shear stress and heat flux at the moving surface for various values of the physical parameters are presented numerically in tabular form and discussed in detail. Originality/value The work is relatively original, as very little work has been reported on magnetohydrodynamic flow and heat transfer over a continuous moving flat surface. Viscous dissipation and Joule heating are neglected in most of the previous studies. The numerical method applied to solve governing equations is finite element method which is new and efficient.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3