Author:
Chaudhary Santosh,Choudhary Mohan Kumar
Abstract
Purpose
The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid over a continuous moving flat surface considering the viscous dissipation and Joule heating.
Design/methodology/approach
Suitable similarity variables are introduced to reduce the governing nonlinear boundary layer partial differential equations to ordinary differential equations. A numerical solution of the resulting two-point boundary value problem is carried out by using the finite element method with the help of Gauss elimination technique.
Findings
A comparison of obtained results is made with the previous work under the limiting cases. Behavior of flow and thermal fields against various governing parameters like mass transfer parameter, moving flat surface parameter, magnetic parameter, Prandtl number and Eckert number are analyzed and demonstrated graphically. Moreover, shear stress and heat flux at the moving surface for various values of the physical parameters are presented numerically in tabular form and discussed in detail.
Originality/value
The work is relatively original, as very little work has been reported on magnetohydrodynamic flow and heat transfer over a continuous moving flat surface. Viscous dissipation and Joule heating are neglected in most of the previous studies. The numerical method applied to solve governing equations is finite element method which is new and efficient.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献