Abstract
PurposeIn this article, the authors aims to introduce a novel Vieta–Lucas wavelets method by generalizing the Vieta–Lucas polynomials for the numerical solutions of fractional linear and non-linear delay differential equations on semi-infinite interval.Design/methodology/approachThe authors have worked on the development of the operational matrices for the Vieta–Lucas wavelets and their Riemann–Liouville fractional integral, and these matrices are successfully utilized for the solution of fractional linear and non-linear delay differential equations on semi-infinite interval. The method which authors have introduced in the current paper utilizes the operational matrices of Vieta–Lucas wavelets to converts the fractional delay differential equations (FDDEs) into a system of algebraic equations. For non-linear FDDE, the authors utilize the quasilinearization technique in conjunction with the Vieta–Lucas wavelets method.FindingsThe purpose of utilizing the new operational matrices is to make the method more efficient, because the operational matrices contains many zero entries. Authors have worked out on both error and convergence analysis of the present method. Procedure of implementation for FDDE is also provided. Furthermore, numerical simulations are provided to illustrate the reliability and accuracy of the method.Originality/valueMany engineers or scientist can utilize the present method for solving their ordinary or Caputo–fractional differential models. To the best of authors’ knowledge, the present work has not been used or introduced for the considered type of differential equations.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献