A mechanism-based elasto-viscoplastic constitutive model for the creep deformation of martensitic heat-resistant steels

Author:

Yin JundongORCID,Zhu Baoyin,Song RunhuaORCID,Li ChenfengORCID,Li DongfengORCID

Abstract

PurposeA physically-based elasto-viscoplastic constitutive model is proposed to examine the size effects of the precipitate and blocks on the creep for martensitic heat-resistant steels with both the dislocation creep and diffusional creep mechanisms considered.Design/methodology/approachThe model relies upon the initial dislocation density and the sizes of M23C6 carbide and MX carbonitride, through the use of internal variable based governing equations to address the dislocation density evolution and precipitate coarsening processes. Most parameters of the model can be obtained from existing literature, while a small subset requires calibration. Based on the least-squares fitting method, the calibration is successfully done by comparing the modeling and experimental results of the steady state creep rate at 600° C across a wide range of applied stresses.FindingsThe model predictions of the creep responses at various stresses and temperatures, the carbide coarsening and the dislocation density evolution are consistent with the experimental data in literature. The modeling results indicate that considerable effect of the sizes of precipitates occurs only during the creep at relatively high stress levels where dislocation creep dominates, while the martensite block size effect happens during creep at relatively low stress levels where diffusion creep dominates. The size effect of M23C6 carbide on the steady creep rate is more significant than that of MX precipitate.Originality/valueThe present study also reveals that the two creep mechanisms compete such that at a given temperature the contribution of the diffusion creep mechanism decreases with increasing stress, while the contribution of the dislocation creep mechanism increases.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3