Control valve stiction compensation by dynamic inversion: a comparative study

Author:

Elferik Sami,Hassan Mohammed,AL-Naser Mustafa

Abstract

Purpose The purpose of this paper is to improve the performance of control loop suffering from control valve stiction. Control valve stiction is considered as of one of the main causes of oscillation in process variables, which require performing costly unplanned maintenance and process shutdown. An adaptive solution to handle valve stiction while maintaining safety and quality until next planned maintenance is highly desirable to save considerable cost and effort. Design/methodology/approach This paper implements a new stiction compensation method built using adaptive inverse model techniques and intelligent control theories. Finite impulse response (FIR) model, which is known to be robust, as a compensator for stiction. The parameters of FIR model are tuned in an adaptive way using differential evolution (DE) technique. The performance of proposed method is compared with other two compensation techniques. Findings The new method showed excellent performance of the DE–FIR compensator compared to other dynamic inversion methods in terms of minimizing process variability, energy saving and valve stem aggressiveness. Research limitations/implications The compensation ability for all compensators reduces with the increase of stiction severity, thus the over shoot case always shows the worst result. In future works, other optimization techniques will be explored to find the appropriate technique that can extend the FIR model size with smallest computation time that can improve the performance of the compensator in over shoot case. In addition, the estimation of the valve residual life based on the level of stiction and effort required by the controller should be considered. Originality/value The presented approach represents an original contribution to the literature. It performs stiction compensation without a need for a prior knowledge on the process or the valve models and guarantees a smooth control of the stem movement with a low control effort. The proposed approach differs from previous adaptive methods as it uses stable FIR models and DE to find the appropriate parameters of the inverse model and handle nonlinear behavior of stiction.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference34 articles.

1. Compensation of control valve stiction through controller tuning;Journal of Process Control,2012

2. Dreams versus reality: a view from both sides of the gap: manufacturing excellence with come only through engineering excellence;Pulp & Paper Canada,1993

3. Modelling valve stiction;Control Engineering Practice,2005

4. Improved stiction compensation in pneumatic control valves;Computers & Chemical Engineering,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3