Life cycle cost analysis of a computerized numerical control machine tool: a case study from Indian manufacturing industry

Author:

Patil Rajkumar BhimgondaORCID,Kothavale Basavraj S.,Waghmode Laxman Yadu,Pecht Michael

Abstract

PurposeLife cycle cost (LCC) analysis is one of the key parameters in designing a sustainable product or system. The application of life cycle costing in the manufacturing industries is still limited due to several factors. Lack of understanding of LCC analysis methodologies is one of the key barriers. This paper presents a generalized framework for LCC analysis of repairable systems using reliability and maintainability principles.Design/methodology/approachThe developed LCC analysis framework and stochastic point processes are applied for the analysis of a typical computerized numerical control turning center (CNCTC) and governing equations for acquisition cost, operation cost, failure cost, support cost and net salvage value are developed. The LCC of the CNCTC is evaluated for the renewal process (RP) and minimal repair process (MRP) approach.FindingsThe LCC analysis of the CNCTC reveals that, the acquisition cost is only 7.59% of the LCC, whereas the operation, failure and support costs dominate and contribute nearly 93% of the LCC. The LCC per day for RP requires additional US$ 1.03 than that for MRP. The detailed LCC analysis of the CNCTC identifies the critical components of CNCTC and these components are: spindle motor, spindle motor cooling fan, spindle belt, drawbar, spindle bearing, oil seals, hydraulic hose, solenoid valve, tool holder, lubrication pump motor system, lubrication hose, coolant pump motor system, coolant hose, supply cables, drive battery.Originality/valueThe developed framework of LCC of a repairable system can be applied to any other repairable systems with the appropriate modifications. LCC analysis of CNCTC reveals that the procurement decision of a product or system should be based on LCC and not only on the acquisition cost. The optimum utilization of consumables such as cutting tools, coolant, oil and lubricant can save operation cost. Thus, use of high-efficiency electric motors and the usage of recommended consumables can prolong the life of several components of a system. Therefore, due consideration and attention to these parameters at product design stage itself will decrease failure and support cost and ultimately its LCC.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference34 articles.

1. On age replacement and the total time on test concept;Scandinavian Journal of Statistics,1979

2. A life cycle cost framework for automotive production lines,2006

3. Parametric vs neural network models for the estimation of production costs: a case study in the automotive industry;International Journal of Production Economics,2004

4. Life cycle assessment and life cycle costing of container-based single-family housing in Canada: a case study;Building and Environment,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3