Data repair of density-based data cleaning approach using conditional functional dependencies

Author:

Al-Janabi SamirORCID,Janicki RyszardORCID

Abstract

PurposeData quality is a major challenge in data management. For organizations, the cleanliness of data is a significant problem that affects many business activities. Errors in data occur for different reasons, such as violation of business rules. However, because of the huge amount of data, manual cleaning alone is infeasible. Methods are required to repair and clean the dirty data through automatic detection, which are data quality issues to address. The purpose of this work is to extend the density-based data cleaning approach using conditional functional dependencies to achieve better data repair.Design/methodology/approachA set of conditional functional dependencies is introduced as an input to the density-based data cleaning algorithm. The algorithm repairs inconsistent data using this set.FindingsThis new approach was evaluated through experiments on real-world as well as synthetic datasets. The repair quality was determined using the F-measure. The results showed that the quality and scalability of the density-based data cleaning approach improved when conditional functional dependencies were introduced.Originality/valueConditional functional dependencies capture semantic errors among data values. This work demonstrates that the density-based data cleaning approach can be improved in terms of repairing inconsistent data by using conditional functional dependencies.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Product Automatic Design Process Detection System based on Genetic Algorithm;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

2. Knowledge Expansion Algorithm of Heterogeneous Network Big Data Based on Improved K-means Algorithm;2022 International Conference on Knowledge Engineering and Communication Systems (ICKES);2022-12-28

3. AI-Based Heterogenous Large-Scale English Translation Strategy;Mobile Information Systems;2022-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3