Big data analytics capability and contribution to firm performance: the mediating effect of organizational learning on firm performance

Author:

Garmaki MahdaORCID,Gharib Rebwar KamalORCID,Boughzala Imed

Abstract

PurposeThe study examines how firms may transform big data analytics (BDA) into a sustainable competitive advantage and enhance business performance using BDA. Furthermore, this study identifies various resources and sub-capabilities that contribute to BDA capability.Design/methodology/approachUsing classic grounded theory (GT), resource-based theory and dynamic capability (DC), the authors conducted interviews, which involved an exploratory inductive process. Through a continuous iterative process between the collection, analysis and comparison of data, themes and their relationships appeared. The literature was used as part of the data set in the later phases of data collection and analysis to identify how the study’s findings fit with the extant literature and enrich the emerging concepts and their relationships.FindingsThe data analysis led to developing a conceptual model of BDA capability that described how BDA contributes to firm performance through the mediated impact of organizational learning (OL). The findings indicate that BDA capability is incomplete in the absence of BDA capability dimensions and their sub-dimensions, and expected advancement will not be achieved.Research limitations/implicationsThe research offers insights on how BDA is converted into an enterprise-wide initiative, by extending the BDA capability model and describing the role of per dimension in constructing the capability. In addition, the paper provides managers with insights regarding the ways in which BDA capability continuously contributes to OL, fosters organizational knowledge and organizational abilities to sense, seize and reconfigure data and knowledge to grab digital opportunities in order to sustain competitive advantage.Originality/valueThis article is the first exploratory research using GT to identify how data-driven firms obtain and sustain BDA competitive advantage, beyond prior studies that employed mostly a hypothetico-deductive stance to investigate BDA capability. While the authors discovered various dimensions of BDA capability and identified several factors, some of the prior related studies showed some of the dimensions as formative factors (e.g. Lozada et al., 2019; Mikalef et al., 2019) and some other research depicted the different dimensions of BDA capability as reflective factors (e.g. Wamba and Akter, 2019; Ferraris et al., 2019). Thus, it was found necessary to correctly define different dimensions and their contributions, since formative and reflective models represent various approaches to achieving the capability. In this line, the authors used GT, as an exploratory method, to conceptualize BDA capability and the mechanism that it contributes to firm performance. This research introduces new capability dimensions that were not examined in prior research. The study also discusses how OL mediates the impact of BDA capability on firm performance, which is considered the hidden value of BDA capability.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

Reference83 articles.

1. Big data research in information systems: toward an inclusive research agenda;Journal of the Association for Information Systems,2016

2. Big data analytics in E-commerce: a systematic review and agenda for future research;Electronic Markets,2016

3. How to improve firm performance using big data analytics capability and business strategy alignment?;International Journal of Production Economics,2016

4. The role of business analytics capabilities in bolstering firms’ agility and performance;International Journal of Information Management,2019

5. Transformational issues of big data and analytics in networked business;MIS Quarterly,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3